Expanding brackets
 and simplifying expressions

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

- When you expand one set of brackets you must multiply everything inside the bracket by what is outside.
- When you expand two linear expressions, each with two terms of the form $a x+b$, where $a \neq 0$ and $b \neq 0$, you create four terms. Two of these can usually be simplified by collecting like terms.

Examples

Example 1 Expand 4(3x-2)

$$
\begin{array}{l|l}
4(3 x-2)=12 x-8 & \begin{array}{l}
\text { Multiply everything inside the bracket } \\
\text { by the } 4 \text { outside the bracket }
\end{array}
\end{array}
$$

Example 2 Expand and simplify $3(x+5)-4(2 x+3)$

$$
\begin{aligned}
& 3(x+5)-4(2 x+3) \\
& \quad=3 x+15-8 x-12 \\
& \quad=3-5 x
\end{aligned}
$$

1 Expand each set of brackets separately by multiplying $(x+5)$ by 3 and $(2 x+3)$ by -4

2 Simplify by collecting like terms: $3 x-8 x=-5 x$ and $15-12=3$

Example 3 Expand and simplify $(x+3)(x+2)$

$$
\begin{array}{r|rl}
(x+3)(x+2) \\
& =x(x+2)+3(x+2) \\
& =x^{2}+2 x+3 x+6 \\
& =x^{2}+5 x+6
\end{array} \quad \begin{aligned}
& \text { 1 } \begin{array}{l}
\text { Expand the brackets by multiplying } \\
(x+2) \text { by } x \text { and }(x+2) \text { by } 3
\end{array} \\
&
\end{aligned} \quad \begin{aligned}
& \text { 2implify by collecting like terms: } \\
& 2 x+3 x=5 x
\end{aligned}
$$

Example 4 Expand and simplify $(x-5)(2 x+3)$

$$
\begin{aligned}
(x-5) & (2 x+3) \\
& =x(2 x+3)-5(2 x+3) \\
& =2 x^{2}+3 x-10 x-15 \\
& =2 x^{2}-7 x-15
\end{aligned}
$$

1 Expand the brackets by multiplying $(2 x+3)$ by x and $(2 x+3)$ by -5

2 Simplify by collecting like terms: $3 x-10 x=-7 x$

edexcel

Practice

1 Expand.
a $3(2 x-1)$
b $-2\left(5 p q+4 q^{2}\right)$
c $\quad-\left(3 x y-2 y^{2}\right)$

2 Expand and simplify.
a $\quad 7(3 x+5)+6(2 x-8)$
b $8(5 p-2)-3(4 p+9)$
c $9(3 s+1)-5(6 s-10)$
d $2(4 x-3)-(3 x+5)$

Watch out!

When multiplying (or dividing) positive and negative numbers, if the signs are the same the answer is ' + '; if the signs are different the answer is ' - '.

3 Expand.
a $3 x(4 x+8)$
b $\quad 4 k\left(5 k^{2}-12\right)$
c $\quad-2 h\left(6 h^{2}+11 h-5\right)$
d $-3 s\left(4 s^{2}-7 s+2\right)$

4 Expand and simplify.
a $3\left(y^{2}-8\right)-4\left(y^{2}-5\right)$
b $\quad 2 x(x+5)+3 x(x-7)$
c $4 p(2 p-1)-3 p(5 p-2)$
d $3 b(4 b-3)-b(6 b-9)$

5 Expand $\frac{1}{2}(2 y-8)$

6 Expand and simplify.
a $\quad 13-2(m+7)$
b $\quad 5 p\left(p^{2}+6 p\right)-9 p(2 p-3)$

7 The diagram shows a rectangle.
Write down an expression, in terms of x, for the area of the rectangle.
Show that the area of the rectangle can be written as $21 x^{2}-35 x$

$7 x$

8 Expand and simplify.
a $\quad(x+4)(x+5)$
b $\quad(x+7)(x+3)$
c $\quad(x+7)(x-2)$
d $\quad(x+5)(x-5)$
e $(2 x+3)(x-1)$
f $(3 x-2)(2 x+1)$
g $\quad(5 x-3)(2 x-5)$
h $(3 x-2)(7+4 x)$
i $\quad(3 x+4 y)(5 y+6 x)$
j $(x+5)^{2}$
k $(2 x-7)^{2}$
l $(4 x-3 y)^{2}$

Extend

9 Expand and simplify $(x+3)^{2}+(x-4)^{2}$
10 Expand and simplify.
a $\left(x+\frac{1}{x}\right)\left(x-\frac{2}{x}\right)$
b $\left(x+\frac{1}{x}\right)^{2}$

edexcel

Answers

1 a $6 x-3$
b $-10 p q-8 q^{2}$
c $-3 x y+2 y^{2}$

2 a $21 x+35+12 x-48=33 x-13$
b $40 p-16-12 p-27=28 p-43$
c $27 s+9-30 s+50=-3 s+59=59-3 s$
d $8 x-6-3 x-5=5 x-11$
3 a $12 x^{2}+24 x$
b $20 k^{3}-48 k$
c $\quad 10 h-12 h^{3}-22 h^{2}$
d $21 s^{2}-21 s^{3}-6 s$
$4 \quad \mathbf{a} \quad-y^{2}-4$
b $5 x^{2}-11 x$
c $2 p-7 p^{2}$
d $6 b^{2}$
$5 \quad y-4$
$6 \quad \mathbf{a} \quad-1-2 m$
b $5 p^{3}+12 p^{2}+27 p$
$7 \quad 7 x(3 x-5)=21 x^{2}-35 x$
8 a $\quad x^{2}+9 x+20$
b $x^{2}+10 x+21$
c $x^{2}+5 x-14$
d $x^{2}-25$
e $\quad 2 x^{2}+x-3$
f $6 x^{2}-x-2$
g $\quad 10 x^{2}-31 x+15$
h $12 x^{2}+13 x-14$
i $18 x^{2}+39 x y+20 y^{2}$
j $x^{2}+10 x+25$
k $4 x^{2}-28 x+49$
l $16 x^{2}-24 x y+9 y^{2}$
$9 \quad 2 x^{2}-2 x+25$

10 a $x^{2}-1-\frac{2}{x^{2}}$
b $\quad x^{2}+2+\frac{1}{x^{2}}$

